
Motion Planning for A Multi-Robot System

Hoang-Dung Bui, Erdem Murat, Amirreza Payandeh

I. INTRODUCTION

Multi-robot motion planning is an active research field
in robotics. There are a lot of research which handle with
moving obstacles, dynamic constraints, path optimizations.
There is a significant progress in this field, however, most
research still make simplification for the robots system
such as: the robot can change their velocities instantly, the
effect of internal-momentum is minimized, the information
of environment is complete, and robots’ dynamic is reliable.
Those simplification limits the deployment of the research
in simulation and real application.

In this project, we will deploy a state-of-the-art motion
planner Continuous Conflict-Based Search [1] for multi-
agent in gazebo environment. In the environment, we con-
sider several factors such as: the error in robot’s motion
models, the sensor’s imperfection, robot’s acceleration and
deceleration, and robot’s inertial momentum. The goal is to
build a motion planner’s pipeline for multi-robot navigating
successfully in the environment without collisions. We will
start with two robots, and then add one more robot to check
the robustness of the motion planner pipeline.

II. RELATED WORK

For this work, we found 5 related papers that take an ap-
proach to multi-robot navigation that is similar in some ways
to ours. For example, a paper [2] used conflict-based search
(CBS) and enhanced it for multi-agent path finding. They
did this by first merging each node of the tree, and restarting
the search after each merge. Then, they prioritized conflicts
and made more informed choices on splitting conflicts. One
paper[3] expands CBS by providing a framework operates on
a search forest rather than a search tree, and creates the forest
on demand, avoiding a factorial explosion of all possible
tasks assignments. Another paper [4] expands on CBS with
A*. One paper [5] focuses on reducing dynamic obstacle
computation by building on the observation that while the
number of safe timestamps may be unbounded, the number
of safe time intervals may be finite and small. Another paper
[6] reviews the systems from multi-agent path finding and
surveys different categories and state-of-the-art approaches
to improve computational optimality.

III. PROJECT FRAMEWORK

Deploying a research into a simulation application is a
sophisticated work and time-consuming to integrate all the
elements. The main components of the projects as shown in
Fig. 1.

Fig. 1: Motion Planner’s Structure

As being putted into a Gazebo environment, the robots
with their sensors will perceive the environment by local-
ization and mapping (SLAM). As a result, we have an
occupancy-grid map of the environment. We will generate
a graph G = (V,E) for the motion planners. The graph
reduces significantly the state’s space of the motion planners
comparing to the occupancy-grid map. To handle the robot’s
dynamics and sensor’s errors, we setup a motion planner’s
framework which consists of two lever planners. The first
one is called Global Planner which determines paths for the
robots as inputting the graph G, and robots start and goal
positions. This Global Planner is shared among all robots.
As completing the task, the Global Planner will send paths
to local planners which directly control the robot’s models or
real robots. The local planners divide the paths into multiple
segments, and control the robot follow the currents ones. The
passed segments will be ignored. Each robot has its own
local planner. The local planner’s output are the velocities
of the robots (angular and linear ones), which are sent to the
on-board local controllers on the robots.

Based on the project framework, we divided the tasks for
members as following:

• Erdem: Working Gazebo environment, occupancy-grid
map, and graph’s generation, and take major charge of
writing this report.

• Amirreza: Working on occupancy-grid map, graph’s
generation, and write the description about his part in
the report.

• Dzung: Working on Gazebo environment setup, the
motion planner’s framework (global planner and local
planner), controlling the robots, and integrating all the
components into a system. He also writes about what
he has implemented.

IV. ENVIRONMENT SETUP

In this project, we used Gazebo simulator to simulate a
environment and robots. We create a open-space with wall-



closed boundary as shown in Fig. 2. Inside the space, there
are 9 columns being setup in a square-shape as obstacles.
Laser sensors were equipped on the robots and can detect
the obstacles, the walls, and measure the distances between
the robots and the objects.

Fig. 2: Gazebo Environment for robots

The used robot’s models are turtlebot3 which is a mobile
robot with differential drive. The robot can move forward,
backward, and rotating by control the velocities’ difference
among their wheels. The robots are equipped with laser
sensors which scan the environment frequently.

The number of robots in the environments can be changed
as we set up the robot’s description file. The robot’s con-
trollers are exactly the same except their namespaces. The
initial robots poses were changed manually each time we
made difference configuration tests. The most challenge’s
configuration for multi-robot motion planner is the robots
are opposite and exchange their position. The environment
starts with two robots, then extend the work for three robots.

The communication between gazebo with the motion
planners was done by ros messages. The environment re-
ceived the velocities messages from the motion planners
via the topics robot_name/cmd_vel. The environment sent
back the laser-sensor data and their odometry information
to the motion planners by the topics /robot_name/scan
/robot_name/odom. The laser and odometry data were pro-
cessed by the motion planner and can be displayed by Rviz
as shown in Fig. 3.

Fig. 3: Outlook of environment from robots’ laser sensors

As mentioned earlier, we also consider the uncertainty of
the robot location and the motion model’s, we use adaptive
Monte Carlo localization (acml) approach to estimate the

position the robots. The green arrow in the Rviz displaying
the particles in acml. We set the number of particles 100.

To run the simulation, we call the launch file in the cs685
package (submitted) by the command:

• roslaunch cs685 cs685_robots_gazebo.launch

V. OCCUPANCY-GRID MAP AND GRAPH EXTRACTION

In this section, we discuss how to generate a occupancy-
grid map from Gazebo environment. This map is the global
frame which all others will rely on.

A. Occupancy-Grid Map

To create the map, we will add a robot into the Gazebo
environment and move it around. As the robot moves, its
laser sensor scans the environment and get the distance from
the sensor (and robot) to the objects in the environment.
Then, both the laser scan and odometry data were sent back
to the SLAM node which then process and generate the map.

To perform the tasks, we open 4 terminals and exports the
environment variable TURTLEBOT3_MODEL to burger
(we use the burger model of robot turtlebot3). In each
terminal, typing the following commands.

• In all terminals: export TURTLEBOT3_MODEL=burger
• terminal 1: roslaunch turtlebot3_gazebo

turtlebot3_world.launch
• terminal 2: roslaunch turtlebot3_teleop

turtlebot3_teleop_key.launch
• terminal 3: roslaunch turtlebot3_slam turtle-

bot3_slam.launch slam_methods:=gmapping
• terminal 4: rosrun map_server map_saver -f /map

The command in terminal 1 will trigger the Gazebo
environment with one robot. The command in terminal 2
allowed us to move the robot around the environment using
a keyboard. The terminal 3’s command starts the slam
package which build the occupancy-grid map by the laser
and odometry data. After the map is done, the command in
terminal 4 will save it into a pgm file which is shown in Fig.
4. All the commands should be implemented following this
order. Especially, the last command is only triggered as we
already discover all the maps.

Fig. 4: Occupancy-Grid Map from the SLAM

As completing the map, we will generate a graph G =
(V,E) for the motion planners.



B. Graph Extraction

Using the occupancy-grid map as the input to the motion
planner, the state-space will be significantly large. Searching
becomes so expensive for the motion planner, especially, if
adding more robot into the system (the computation time
increases exponentially). To improve the efficiency of the
searching, we convert the occupancy-grid map into a graph
and use it as the input to the motion planner. To do this, we
wrote Python code that used PRM (probabilistic roadmap)
method to generate a graph which represents the environment
structure.

Within a given area, PRM generates a limited number
of random points. The PRM algorithm clusters nodes into
connected components after they are generated. The nodes
are connected if the connection’s line do not intersect with
any obstacles and the line’s length is smaller than a threshold
dmax (dmax is set to five in this project). To increase the
clearance between the sample points and obstacles, we flatten
the obstacles and wall by six pixels (the circle around the
obstacles and the blue polygon offset from the boundary).
The number of sample is set to four thousands. The result’s
graph from the algorithm is shown in Fig. 5.

Fig. 5: Graph from the Occupancy-Grid Map

This graph will be saved in a file graph.xml, which is one
input to the CCBS - global planner.

VI. MOTION PLANNER FRAMEWORK

In this section, we will discuss how to build a motion
planner framework which is able to determine collision-free
paths and control the robot strictly follow the paths under
several constraints. As mentioned in section III, the motion
planners consists two levels: global one and local one.

In the global planner, we use the planner Continuous
Conflict-Based Search - a state-of-the-art motin planner [1].
The planner receives a graph, robot’s starts and goals, then
output the collision-free paths with timestamp for all robots.
In the paths, beside the set of waypoints which the robots
must follow, there is also a timestamp, which indicates how
long the agent has to perform the move. If the agent can not
achieve the points at the timestamp, the collision still can
happen. The global planner is the block CCBS - Global MP
in Fig. 6.

The global planner exchanges data with the Main node by
ros service. As the Main node receives the paths from the

Fig. 6: Motion Planner’s Pipeline

global planner, it sends them out to the Local MP nodes.
As we have more robots in the simulation, we need to add
more local planner in this structure. The structure in Fig. 6
works for two robots.

The local planner is based on Dynamic Window Approach
(DWA) [7] to avoid collision. This planner will divide the
received path into multiple-segments, and only consider the
current segment which the robot is currently in. The previous
segments will be ignored. As the robot completed 1 segment,
the local planner will move to the next one. In each segment,
the planner will calculate the velocities (angular and linear)
for the robot and send them to the wheels by a ros message
with topic /robot_name/cmd_vel. After moving each step, the
robot will re-estimate its location by acml package. As the
estimated pose closes to the goals under a threshold, the
robot will be considered being at its goal.

The communication among the nodes are described as
following:

• Between Graph and Main Node: As Graph node has the
graph, it will send it by a ros message to Main Node.

• Between Main Node and CCBS - Global MP: They
exchange data by ros - service. As Main Node have a
graph, starts and goals for robots, it will send a request
to the node CCBS - Global MP. As completing the
paths, the node will response to Main Node by a set
of paths.

• The exchanged data between Main Node and CCBS-
Global Planner node consists of multiple paths, which
a new structure in nav_msgs package, thus we define a
new service message as shown in Fig. 7. The request

Fig. 7: Service message

contains of two vectors of geometry_msgs/PoseStamped
which consists of the starts and goals. The reponse
part contains a vector of nav_msgs/path - consists the
determined paths for the robots.

• Between Main Node and the Local Planners: They
exchange data by ros action. As Main Node receives
a set of paths, it will separate the set into the single
path and send it to the corresponding robots. Then Main
Node monitors the moving process of the robots and



receives the feedback from the Local MP nodes during
the process. As the robots reach their goals, all Local
MP will send a result back Main Node.

• To use ros action to communicate between Main Node
and Local Planner nodes, we setup a new action mes-
sage which is new for our own purpose. The structure
of the action message as shown in Fig. 8. The goal part

Fig. 8: Action message

is the path which the robot need to follow. As robot
reach goal, we do not need to send any data back, just
notify that the robot has reached goal. The action server
feedback to the action client by the current robot pose.

• Between Local Planner nodes and their robot’s models:
the Local Planner nodes send the velocities to the robot
by ros message topic.

VII. IMPLEMENTATION

There are prerequisite packages, which are needed to be
installed to run our simulation packages:

1) Install ROS noetic (with Rviz and Gazebo)
2) Install the ROS navigation stack package:

https://github.com/ros-planning/navigation
3) Install Shapely pip install shapely
4) Install CCBS https://github.com/PathPlanning/Continuous-

CBS

A. Running our project

Due to the complex of CCBS package, we don’t have
enough time to integrate all the mentioned components into
a seamless ROS system. The simplex package in CCBS used
a definition circle to define some subclass within it. That is
an error in ROS, which maintain a strict definition hierarchy.
Therefore, the system works as following:

• Generate the occupancy-grid map and save it into a
map.pgm file (following section V-A)

• Run the python script (python3 graph_xml.py) to gener-
ate a graph (from the map.pgm file), and save the graph
into a graph.xml file. The graph should contain at least
4000 nodes.

• Define the number agents and its goals and starts in a
file: graph_task.xml

• Run CCBS (after compiling it successfully) by the
command: ./CCBS address_to_graph/graph.xml ad-
dress_to_graph_task/graph_task.xml. The output is a
graph_task_log.xml file, which consist the paths for
robots. Copy that file into the src directory in the
submitted cs685 package.

• Run the cs685 package which is a ROS package and
submitted with this report. To run this package, we need
four terminals:

– terminal 1: run the command roslaunch cs685
cs685_robots_gazebo.launch

– terminal 2: run the command roslaunch cs685
cs685_3turtlebot_navigation.launch

– terminal 3: run the command rosrun cs685 read-
ing_paths

– terminal 4: run the command roslaunch cs685
move_control_client

Terminal 1 runs the Gazebo simulation, terminal 2
runs the local planners, terminal 3 reads the file
graph_task_log.xml, extract the paths to be ready. And
terminal 4 calls Main Node, which get the paths
from the reading_paths nodes, separate them and send
the single paths to each local planner. The node
move_control_client will terminate as it receives the
results from all local planners.

VIII. RESULTS

Although the ROS Integration work is not done, the system
still perform in some ways, and the results are quite positive.
We tested with two agents and then extended to three agents.

A. 2 Agents

We have test in four robot configurations. In configuration
A (scene A) we set up a simple scenario as the robot paths
does not intersect. In scene B, the starts and goals for each
agents are far, and the paths intersect at 1 point.

Fig. 9: Configuration A and B

In scene C (Fig. 10), we set the goal of agent 1 is close
to the agent 2, so the motion planners must find paths which
move agent 2 out of is initial position as soon as possible.
The most challenge scene is scene D, where the robots at
the opposite positions, and their goals are at the opposite
position. It requires the motion planner being robust to ask
at least one robot make a turn soon to let other robot reaching
the goal.

In all the scenes, the motion planner works efficient, and
determines the paths for the robots to go safely. The local
planners also perform well, and regulate the robots’ velocities
to reach the goals without collision and proper time stamps.
The implementation of two robots configuration can be seen
full in this https://youtu.be/3cM25l3SEEg.

https://youtu.be/3cM25l3SEEg


Fig. 10: Configuration C and D

B. 3 Agents

In this part, we add one more robot into the environment.
This will make the simulation more complicated in motion
planning and controlling. The robot configuration is shown
in Fig. 11.

Fig. 11: Motion Planners with 3 robots

All robot paths intersect each other at some points, and
their starts are at some side of the environments, and the
targets are one the other side. The goal 1 is close to start
3, and vice versa, and that makes challenge for the motion
planners to complete the tasks. And the motion planners
proved their robustness by planning and controlling the robot
reaching their goals safely. The video-clip can be seen in this
link https://youtu.be/q7LwcfWmWbQ.

IX. CONCLUSIONS

In this project, we have built a motion planner framework
which works for a multi-robot system to find collision-
free paths for multi-robot. The motion planner framework
contains a global planner and multiple local planners can
handle the robot dynamics, tolerate the sensor’s errors and
the uncertainty of the robot motion’s models. As shown in the
results, the motion planner framework is able to work well
with two to three robots with multiple scenarios. There is still
some parts which are not completed in this project such as
integrating all the components into a ROS seamless system
or improve the clearance from the robots to the obstacles.

In a review, we can say that we have completed all the ini-
tial goals which are defined at the beginning of the projects:
(1) build a sensor-based motion planner for two robots in
a Gazebo simulation, (2) the motion planner can determine
efficient the paths for the dual robots in simple scenarios.
More from that, we can extend to three robots which works
in complex environment with multiple obstacles. We also
tested the motion planner in multiple scenario, and it still
provided a positive result.

X. FUTURE WORK

From this project, there is plenty of space to improve in
the future. We should spend more time on engineering work
to build a seamless ROS multi-robot system. We should
improve the local planner to increase the clearance to the
obstacles and other robots. Improving the velocities control
of the local planner is also a interesting aspect. One more
interesting task is applying this motion planner framework
to the real robots. Moreover, to get a good publication from
this, we need to increase significantly the number of robots
and add more constraints such as communication ones into
the system.

REFERENCES

[1] Anton Andreychuk, Konstantin Yakovlev, Pavel Surynek, Dor Atzmon,
and Roni Stern. Multi-agent pathfinding with continuous time. Artificial
Intelligence, 305:103662, 2022.

[2] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, Oded Betzalel,
David Tolpin, and S. E. Shimony. Icbs: The improved conflict-
based search algorithm for multi-agent pathfinding. In Symposium on
Combinatorial Search, 2015.

[3] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and
Nora Ayanian. Conflict-based search with optimal task assignment. AA-
MAS ’18, page 757–765, Richland, SC, 2018. International Foundation
for Autonomous Agents and Multiagent Systems.

[4] Yang Li, Jun Wang, and Hualiang Zhang. Research and optimization of
conflict search algorithm for multi-agent path planning based on incre-
mental heuristic. Journal of physics. Conference series, 2024(1):12048–
, 2021.

[5] M Phillips and M Likhachev. Sipp: Safe interval path planning for
dynamic environments. In 2011 IEEE International Conference on
Robotics and Automation, pages 5628–5635. IEEE, 2011.

[6] Hang Ma. Graph-based multi-robot path finding and planning. Current
Robotics Reports, 3(3):77–84, jun 2022.

[7] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic
window approach to collision avoidance. IEEE Robotics & Automation
Magazine, 4(1):23–33, 1997.

https://youtu.be/q7LwcfWmWbQ

	Introduction
	Related Work
	Project Framework
	Environment Setup
	Occupancy-Grid Map and Graph Extraction
	Occupancy-Grid Map
	Graph Extraction

	Motion Planner Framework
	Implementation
	Running our project

	Results
	2 Agents
	3 Agents

	CONCLUSIONS
	Future Work
	References

